EFLX4K eFPGA IP Core Validated on TSMC16FFC
EFLX200K Evaluation Boards Now Available

2018 04 Eval Board Demo Video.png

The EFLX4K eFPGA IP core, both the Logic and DSP versions, have been fully validated on TSMC16FFC. The GDS is also compatible with TSMC16FF+ with no change, just retiming. Same for TSMC12FFC.

Evaluation boards are available now that integrate the EFLX200K validation chip (a 7x7 array of EFLX 4K cores: 182K LUT4, 560 MACs, 1.4Mbit attached SRAM, PLL & PVT) for customers to test their RTL on real silicon.  Customers can either use the boards at no cost for short-term evaluation or can purchase boards.  The evaluation board comes with documentation, examples, and test benches.

Click HERE to watch a ~5 minute demo of the EFLX200K evaluation board.

Contact info@flex-logix.com for more information on obtaining an evaluation board for evaluation or purchase.

NEW "Gen 2" Architecture for EFLX in TSMC 16/12

Gen 2 architecture raises the bar on performance and density

The EFLX4K Logic and DSP cores and the EFLX150 Logic and DSP cores in TSMC 16FF+/FFC/12FFC use our latest "Gen 2" architecture with the following improvements (ALL future EFLX implementations will also be "Gen 2"):

  • Improved, higher performance XFLX™ interconnect, especially for larger arrays

  • 6-input LUTs with Dual Outputs with 2 optional flip flops (can also be dual 5-input LUTs) - higher logic density and higher performance due to fewer LUT stages

  • The Gen 2 combination of the improved interconnect and wider LUTs results in ~20-30% reduction in LUTs required and ~25% improvement in critical path performance compared to the first generation dual-4-input-LUTs in the same process node. A LUT6 has 1.6x the logic capacity of a single LUT4. Read here why 6-input LUTs give higher performance and higher density.

  • In the EFLX4K DSP cores, the MACs are pipelined 10 in a row (compared to 5 in Gen 1) enabling higher performance for FIR/IIR filters, etc by using high speed data pipelining rather than using the general programmable interconnect network. HERE is a DSP Architecture brief with more details.

  • DFT is enhanced to provide 99% coverage of all stuck-at faults with significantly higher coverage achieved with larger test vector sets, which Flex Logix provides.

  • Test time for the Gen 2 architecture is enhanced with new parallel load logic which reduces test time by ~100x compared to the first generation

  • Readback circuitry (EFLX4K TSMC 16FFC/FF+ and all future implementations) enables configuration bits to be read back and checked for soft errors (and corrected) as frequently as desired to improve reliability for High-Rel applications like automotive and defense/aerospace

If you are interested in detailed performance benchmarks or in an area comparison with Achronix, go to the web page HERE.

EFLX4K for TSMC 16FFC/FF+/12FFC is available now and a Validation Chip (16FFC) has been Fully Characterized: Report Available on TSMC Online

The EFLX4K Logic Core and DSP core are both available now: GDS, Verilog, etc etc.  

Licensees have already taped-out chips using EFLX Arrays based on the new EFLX4K TSMC16FFC IP core, which is also compatible with TSMC 16FF+ and TSMC 12FFC (timing will need to be rechecked at all process corners).

Here is a product brief you can distribute to your team/customers:  Gen2 EFLX4K TSMC16FFC/FF+/12FFC Product Brief.

The EFLX4K cores in TSMC 16/12 use just 7 layers of metal (M1+ 2Xa_1Xd_h_3Xe_vhv) making them compatible with essentially all TSMC 16/12 metal stacks.

The EFLX4K cores are interchangeable in arrays and measure 1.0 sq mm in area.  Arrays of any rectangular size from 1x1 to 7x7 are possible enabling ~50 array sizes up to 200K LUTs to meet all customer needs.  Array level performance for RTL will vary primarily with the number of logic levels and the length of critical paths, but performance of well design RTL should be >500MHz (well designed means pipelining designs for FPGA architecture, not just dropping in an RTL optimized for an ASIC with 30+ logic stages).

The density of TSMC16/12 EFLX4K cores in LUTs/square millimeters is very high and is similar to the Intel Stratix 14nm FPGA described at ISSCC 2017.

The EFLX4K cores operate over all voltage ranges supported by TSMC 16FFC/FF+/12FFC and over -40C Tj to +125Tj.  

The cores have been verified with high speed "stress" RTL like 100% utilization inverter chains to ensure that high speed, high switching factor RTL can operate at max performance within IR drop budgets.

A detailed data sheet with extensive specifications and operation details is available under NDA.  Here is a block diagram of the EFLX4K IP core.


The EFLX4K IP cores has been validated in a validation chip with a 7x7 EFLX200K array consisting of 14 EFLX4K DSP cores and 35 EFLX4K Logic cores: ~170K LUT4s and 560 MACs; the validation chip also has numerous banks of high speed RAM, a PLL for >1GHz operation and PVT monitors to determine exact on-chip Tj and Vj for validation of specs at worst case conditions.

Validation is complete: a report is available under NDA.  A Hardware Evaluation Board is available as a loaner or to purchase.

A high level GDS plot of the validation chip is shown to the right.


EFLX150 for TSMC® 16FF+/FFC/12FFC  is available now and Silicon is Fully Validated

EFLX150 in TSMC 16FF+/FFC/12FFC enables programmable networking chips with wide, reconfigurable logic from 150 to 3.7K LUT4s running ~1GHz (exact speed depends on the RTL and the voltage range).  This core is GDS compatible with TSMC 12FFC; timing files are re-run with 12FFC timing.

The EFLX150 core in TSMC 16FF+/FFC/12FFC has been enhanced to provide higher performance for the wide logic cones of network control logic:

  • 96 each of 6-input LUTs (also useable as dual 5-input LUTs & equivalent to ~150 LUT4s): wider LUTs mean wide logic cones can be handled in fewer stages meaning higher performance and higher density. Read here why we switch to 6-LUTs for speed and density.

  • 224 inputs and 224 output: more inputs means wider logic paths can be handled in fewer EFLX150 cores

All voltage ranges are supported for 16FF+/FFC/12FFC over the full -40 to 125C temperature range.

A single EFLX150 core is 0.05 mm2 in size. It uses just 6 metal layers (M1+2Xa_1Xd_h_2Xe_vh) so it is compatible with almost all FF+/FFC metal stacks.

The EFLX150 core tiles in ~25 array sizes from 150 to 3.7K LUTs.

Test vectors are available; DFT total fault coverage is >99%.

TRY OUT YOUR RTL: get a software evaluation license for the EFLX Compiler with worst-case timing files for EFLX150 in TSMC 16FF+/FFC to see how your RTL performs and how many LUTs it uses.  Email info@flex-logix.com to arrange your license. 

Here is the TSMC 16FF+/FFC EFLX150 core product brief.

A much more detailed data sheet is available under NDA: contact us at info@flex-logix.com.

The validation chip includes two array sizes and checks out the circuitry for "tiling" into larger arrays.  An on-chip PLL enables generating clocks >1GHz.  On-chip SRAM provides a "tester on a chip" to enable >1GHz operation at worst case conditions to verify performance versus simulation.  On-chip Process/Voltage/Temperature monitors ensure testing is being done at worst case conditions on-die.  Validation is complete and a detailed report is available under NDA: info@flex-logix.com.